UNIC Mathematics Summer School, June 2024

Topic: Spectral Theory Instructor: Prof. Dr. Luka Grubišić, Faculty of Science University of Zagreb

1. Course description: Spectral Theory is an area of mathematics whose basic objects of study are self-adjoint operators on Hilbert spaces.

2. Course goals:

- In this lecture series we first introduce a standard spectral theory of self-adjoint operators in a Hilbert space. As prototypes we will take operators defined by differential expressions in the spaces of square integrable functions.
- Introduce students to the modern computational functional calculus based on rational function approximation theory.

3. Timetable

Date & Time	Content							
Virtual phase								
14.06.2024 2 hrs	Lecture 1: Review of Course Material							
exact time will be	We review linear algebra, complex and real analysis tools necesary fo							
confirmed later	the study of spectral theory.							
20.06.2024 2 hrs	Lecture 2: Introduction to the Topic							
exact time will be	Examples of linear operators on Hilbert spaces and their applicatio							
confirmed later	in mathematical physics and control theory.							
Physi	cal phase at the Inter University Centre, Dubrovnik							
26.06.2024	Lecture I:							
11:00-13:00 CET	Closed operators and their spectrum. Operators defined as sesquilinear							
11.00 10.00 CE1	forms.							
27.06.2024	Lecture II:							
11:00-13:00 CET	Spectral projections, resolvent formulae and Dunford integral							
27.06.2024	Lecture III:							
15:00-17:00 CET	Integration with respect to the spectral measure							
28.06.2024	Lecture IV:							
9:00-11:00 CET	Sturm-Liouville Operators and applications							
20.062024								
29.06.2024	Lecture V:							
9:00-11:00 CET	Resolvent-based approach to evaluate the spectral measure,							
	regularization using rational convolution methods.							

Recommended reading/textbook list for the course:

- E. Brian Davies: Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics
- J. Weidmann: Linear Operators in Hilbert Spaces, Springer
- K. Schmudgen: Unbounded Self-adjoint Operators on Hilbert Space
- M. Colbrook, A. Horning, A. Townsend, "Computing spectral measures of self-adjoint operators," SIAM Review, 63(3), 489-524, 2021

4. Mode of delivery:

- Students need to read the materials and complete the problem assignments.
- Virtual Seminars via Zoom or Microsoft Teams.
- Face-to-face classes at the Inter University Centre, Dubrovnik.
- Virtual and face to face group meetings

5. Period: June 2024

Virtual phase: 14.06 and 20.06.2024 Physical phase: 24.06 - 30.06.2024

6. Students: Open to students from Mathematics Bachelor and Master

7. Workload:

- Independent work (Reading materials, homework problems) 14 h
- Lectures 14 h (Virtual 4 h, Face to face 10 h)
- Group project 14 h
- Total number of hours: 42 h

8. Assessment methods:

In order to pass this course, the following assessment criteria will be used:

- Compulsory participation in the virtual and physical lectures
- Compulsory reading and homework assignments
- Final group project assignment, due before August 31, 2024.

Grading: Pass/Fail or Satisfactory/Unsatisfactory

9. Teaching language: English

10. ECTS: 5 in total together with the other two topics:

- Spectral Theory
- Elements of the Theory of Hilbert Spaces,

in the Summer School. Total workload of the three topics is 126 h.

Topic: Algebraic Geometry Instructor: Prof. Dr. Anca Mustata, University College Cork

1. Course description: Algebraic Geometry is an area of mathematics whose basic objects of study are solution sets of polynomial equations in multiple variables – these are the building blocks of algebraic varieties. In this course we will introduce and work with algebraic methods designed to describe geometric properties of algebraic varieties, with a focus on the study of algebraic curves.

2. Course goals:

- To introduce the main concepts and techniques used in the study of solution sets of polynomial equations.
- To provide the students with concrete examples of algebraic varieties and their geometric feature, which can serve as a solid basis for a graduate course in Algebraic Geometry.

3. Timetable

Date & Time	Content							
Virtual phase								
14.06.2024 2 hrs exact time will be confirmed later	Lecture 1: Review of Course Material We review linear algebra methods used in the study of solution sets of polynomial equations: elimination methods, resultant of two polynomials, secant and tangent methods for finding rational points on curves.							
20.06.2024 2 hrs exact time will be confirmed later	Lecture 2: Introduction to the Topic We introduce the notions of affine and projective varieties, and compare algebraic curves over the fields of rational, real and complex numbers.							
Physical phase at the Inter University Centre, Dubrovnik								
24.06.2024 9:00-11:00 CET	Lecture I: Algebraic curves: tangent cone, smooth and singular points, conics and cubics.							
25.06.2024 9:00-11:00 CET	Lecture II: Bezouts' formula for the intersection of plane projective curves. The group structure on an elliptic curve.							
27.06.2024 9:00-11:00 CET	Lecture III: The Euler number and genus; the Riemann-Hurwitz formula. The Genus - Degree formula for plane curves.							
28.06.2024 11:00-13:00 CET	Lecture IV: The ideal-variety correspondence. Hilbert's Nullstellensatz for affine and projective varieties. Regular maps. Veronese and Segre embeddings.							

28.06.2024	Lecture V:						
15:00-17:00 CET	Hilbert polynomials, dimension, degree and arithmetic genus of						
	projective varieties.						

Recommended reading/textbook list for the course:

- Miles Reid: Undergraduate Algebraic Geometry, Cambridge University Press, 2000
- Frances Kirwan: Complex Algebraic Curves, Cambridge University Press, 1992.
- David Cox, John Little, Donal O'Shea: Ideals, Varieties and Algorithms. chapters 1, 3, 4, 5, 7, 8, 9

4. Mode of delivery:

- Students need to read the materials and complete the problem assignments.
- Virtual Seminars via Zoom or Microsoft Teams.
- Face-to-face classes at the Inter University Centre, Dubrovnik.
- Virtual and face to face group meetings

5. Period: June 2024

Virtual phase: 14.06 and 20.06.2024 Physical phase: 24.06 - 30.06.2024

6. Students: Open to students from Mathematics Bachelor and Master

7. Workload:

- Independent work (Reading materials, homework problems) 14 h
- Lectures 14 h (Virtual 4 h, Face to face 10 h)
- Group project 14 h
- Total number of hours: 42 h

8. Assessment methods:

In order to pass this course, the following assessment criteria will be used:

- Compulsory participation in the virtual and physical lectures
- Compulsory reading and homework assignments
- Final group project assignment, due before August 31, 2024.

Grading: Pass/Fail or Satisfactory/Unsatisfactory

9. Teaching language: English

10. ECTS: 5 in total together with the other two topics:

- Spectral Theory
- Elements of the Theory of Hilbert Spaces,

in the Summer School. Total workload of the three topics is 126 h.

Topic: Elements of the theory of Hilbert spaces Instructor: Prof. Dr. Andrzej Łuczak, Łodz University

1. Course description: The aim of the course is to present some fundamental topics of the theory of Hilbert spaces such as linear forms and operators, adjoint and selfadjoint operators, orthogonal projections and basic topologies on the space B(H).

2. Course goals:

• To provide the students with basic knowledge of Hilbert space theory allowing them to study more advanced topics such as e.g. unbounded operators or spectral theory of linear operators on Hilbert spaces.

Date & Time	Content							
Virtual phase								
14.06.2024 2 hrs exact time will be confirmed later	Lecture 1: Review of Course Material Presentation of the subject of the course and its connection with other fields of mathematics. Overview of the students' mathematical background necessary for the understanding of the lectured material.							
20.06.2024 2 hrs exact time will be confirmed later	Lecture 2: Introduction to the Topic Brief recalling of basic notions of normed (Banach) spaces, bound linear operators and functionals, with some typical examples in fin and infinite dimensions.							
Physical phase at the Inter University Centre, Dubrovnik								
24.06.2024 11:00-13:00 CET	Lecture I: Inner products on linear spaces. Schwarz inequality. Polarization formula. Definition and examples of Hilbert spaces.							
24.06.2024 15:00-17:00 CET	Lecture II: Orthogonality. Orthogonal bases. Bessel inequality and Parseval identity. Separable Hilbert spaces.							
25.06.2024 11:00-13:00 CET	Lecture III: The weak topology and the notion of the dual space. Riesz's representation theorem.							
25.06.2024 15:00-17:00 CET	Lecture IV: Bounded linear forms and bounded linear operators. The adjoint operator. Unitary operators. Strong-operator and weak-operator topologies.							
26.06.2024 9:00-11:00 CET	Lecture V: The lattice of projections. Union (∨) and intersection (∧) of projections. Properties of projections.							

3. Timetable

Recommended reading/textbook list for the course:

- 1. R.V. Kadison and J.R. Ringrose "Fundamentals of the Theory of Operator Algebras I" Chapter 2, Academic Press, New York, 1983.
- 2. G.K. Pedersen "Analysis Now" Chapter 3, Springer, New York, 1989.
- 3. W. Rudin "Functional Analysis" Chapter 12, McGraw-Hill, New York, 1973.

4. Mode of delivery:

- Students need to read the materials and complete the problem assignments.
- Virtual Seminars via Zoom or Microsoft Teams.
- Face-to-face classes at the Inter University Centre, Dubrovnik.
- Virtual and face to face group meetings

5. Period: June 2024

Virtual phase: 14.06 and 20.06.2024 Physical phase: 24.06 - 30.06.2024

6. Students: Open to undergraduate students who have received at least 90 ECTS credits in mathematical courses or for 1st year graduate students.

7. Workload:

- Independent work (Reading materials, homework problems) 14 h
- Lectures 14 h (Virtual 4 h, Face to face 10 h)
- Group project 14 h
- Total number of hours: 42 h

8. Assessment methods:

In order to pass this course, the following assessment criteria will be used:

- Compulsory participation in the virtual and physical lectures
- Compulsory reading and homework assignments
- Final group project assignment, due before August 31, 2024.

Grading: Pass/Fail or Satisfactory/Unsatisfactory

9. Teaching language: English

10. ECTS: 5 in total together with the other two topics:

- Spectral Theory
- Algebraic Geometry,

in the Summer School. Total workload of the three topics is 126 h.

Time Slot	Monday June 24	Tuesday June 25	Wednesday June 26	Thursday June 27	Friday June 28	Saturday June 29	Sunday June 30
9:00- 11:00	Algebraic Geometry I	Algebraic Geometry II	Hilbert Space Theory V	Algebraic Geometry III	Spectral Theory IV	Spectral Theory V	Discussion
11:00- 13:00	Hilbert Space Theory I	Hilbert Space Theory III	Spectral Theory I	Spectral Theory II	Algebraic Geometry IV	Question and Answer	Discussion
13:00- 15:00	LUNCH and Discussion	LUNCH and Discussion	LUNCH and Discussion	LUNCH and Discussion	LUNCH and Discussion	LUNCH and Discussion	LUNCH
15:00- 17:00	Hilbert Space Theory II	Hilbert Space Theory IV	Free Afternoon	Spectral Theory III	Algebraic Geometry V	Free Afternoon	Free Afternoon